The Influence of the Bilingual Experience on Word Learning in School-Age Children: An ERP Study

Cristy Sotomayor^{1,2}, Mandy Maguire³, & Alyson D. Abel¹ San Diego State University¹, University of California, San Diego², University of Texas at Dallas³

Background

- Bilingual children exhibit differential neural commitment as a function of exposure to their two languages¹
 - Bilingual infants show enhanced attentional control during novel word learning compared to monolingual infants²
- Bilingual adults engage in deeper semantic processing during word learning compared to monolingual adults³
- Influence of bilingualism and SES on vocabulary size in children⁴
- What factors unique to the bilingual experience influence word learning? L2 proficiency
- <u>Purpose</u>: Examine the relation between the bilingual experience, SES, and word learning in school-age children

Hypotheses

During a word learning task:

- 1) L2 proficiency and SES will be a significant predictors of the P2OO effect, indexing attentional control
- 2) L2 proficiency and SES will be a significant predictors of the N400 effect, indexing semantic processing

Acknowledgements

- Dr. Alyson D. Abel and members of the Language Learning Lab at San Diego State University
- Dr. Mandy Maguire and the members of the Developmental Neurolinguistics Lab at UT Dallas
- Faculty and Staff of the Joint Doctoral Program in Language and Communicative Disorders
- National Institutes of Health award 2T32DC007361-11A1
- National Science Foundation BCS-1551770

NIH National Institutes of Health

Methodology
<u>Participants</u>
 Typically-developing, 10–15 year old
children part of larger study
 23 English/Spanish bilinguals (Mage= 12.13,
<i>SD</i> = 1.50)
 Language proficiency measured via parent
report on 1 (low) to 5 (high) scale
(<i>M</i> rating=4.22, SD= .89)
 Maternal education (scale from 1 to 6) used
as a proxy for SES (<i>IQR =</i> 2)
Word Learning Task
 Children read groups of 3 sentences
introducing each nonsense word
 2 conditions (50/condition):

- Meaning Condition sentence triplets supported nonsense word meaning
- No Meaning Condition sentence triplets did not support meaning

Sentence Order	Meaning Condition Example
1	The bird pooped on my <i>shap</i> .
2	My brother let me borrow his <i>shap</i> .
3	I like to drive my <i>shap</i> .
Test question	What does <i>shap</i> mean?

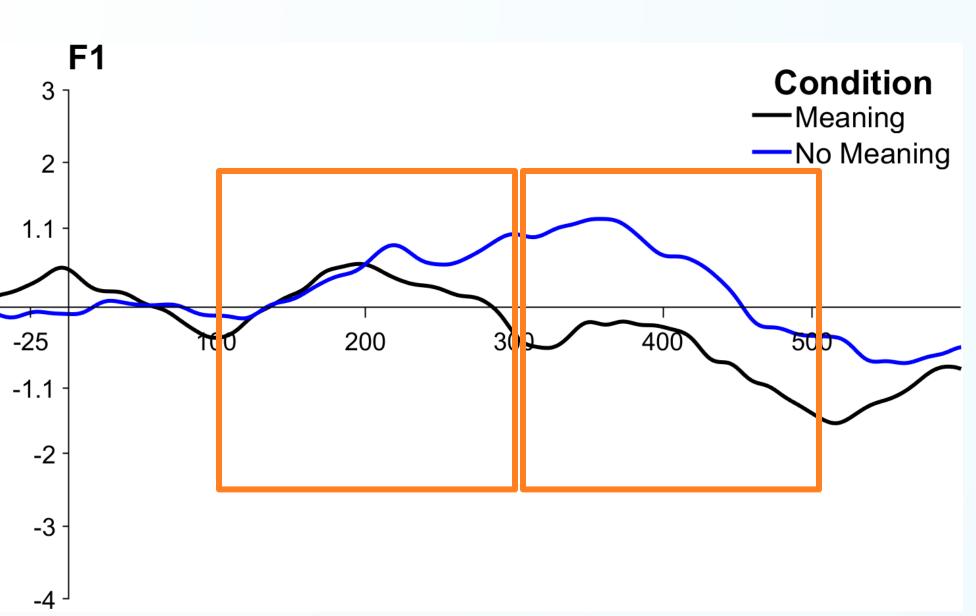
<u>Lieul'echephalegraphy (Lee)</u> • P200 amplitude (100–300msec)

- Frontal and central electrodes⁵
- N400 amplitude (300–500msec)
 - Frontal and central electrodes⁶
- Learning Effects (Difference ERP waves)
 - Sentence 3 Sentence 1
- Epochs from incorrect responses on task were excluded
- Linear mixed model for each component
 - Fixed effects: L2 proficiency, SES, and condition
 - Random effects: Subjects
 - Interactions: condition*L2 proficiency and condition*SES

Results

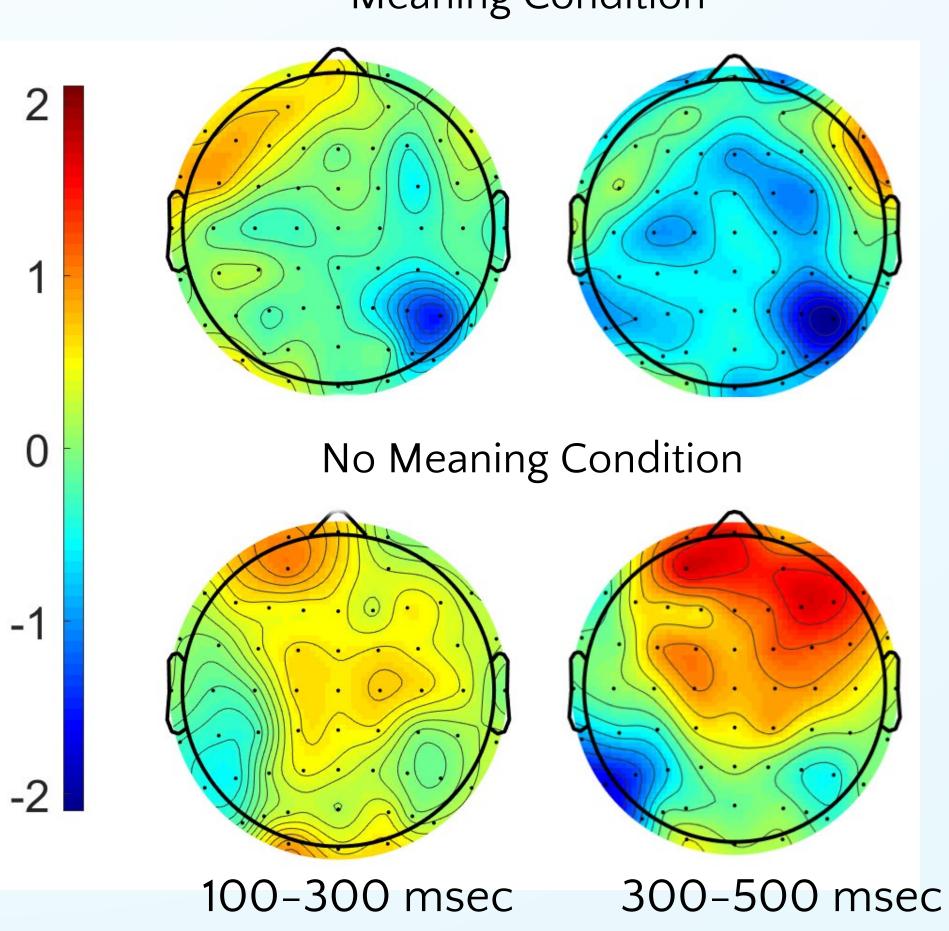
<u>Accuracy</u>

Greater accuracy in the No Meaning (M = 76.3%, SD = 15.3%) versus Meaning (*M* = 62.0%, SD = 16.2%) condition, t(44) = -3.10, p = .004


P200

No significant main effects (p>.05) No significant interactions (p>.05)

N400


No significant main effects (p>.05) No significant interactions (p>.05)

EEG Difference Waveform (Learning Effect):

Scalp Maps

Meaning Condition

Findings: Condition had a effect on behavioral accuracy

<u>Findings</u>: Did not find learning effect of L2 proficiency or SES on word learning linked to attention

<u>Findings</u>: Did not find learning effect of L2 proficiency or SES on word learning linked to semantic processing

Implications: No evidence of influence of L2 language proficiency or SES on word learning in bilingual school-aged children • Larger sample size needed in future studies • Examining various factors associated with

546-557.

and bilingual listeners. Language, Cognition and Neuroscience, 31, 196-205 6 Abel, A. D., Schneider, J., & Maguire, M. J. (2018). N400 response indexes word learning from linguistic context in children.

Language Learning and Development, 14, 61–71.

UC San Diego

Findings

<u>Accuracy</u>

P200

N400

Conclusion

word learning obtain greater insight into the developing mind adapts to different types of early language environments

References

1 Garcia-Sierra, A., Rivera-Gaxiola, M., Percaccio, C. R., Conboy, B. ., Romo, H., Klarman, L., ... & Kuhl, P. K. (2011). Bilingual language learning: An ERP study relating early brain responses to speech, language input, and later word production. *Journal of Phonetics*, 39,

2 Singh, L., Fu, C. S., Tay, Z. W., & Golinkoff, R. M. (2018). Novel word learning in bilingual and monolingual infants: evidence for a bilingual advantage. Child Development, 89, e183-e198. 3 Kaushanskaya, M. (2018). What can errors tell us about differences between monolingual and bilingual vocabulary learning? International Journal of Bilingual Education and Bilingualism, 21, 389-404.

4 Chiat, S., & Polišenská, K. (2016). A framework for crosslinguistic nonword repetition tests: Effects of bilingualism and socioeconomic status on children's performance. Journal of Speech, Language, and Hearing Research, 59, 1179–1189. 5 Astheimer, L. B., Berkes, M., & Bialystok, E. (2016). Differential allocation of attention during speech perception in monolingual

Clinical and Cognitive Neuroscience