

INTRODUCTION & OBJECTIVES

Event Related Potentials (ERPs) can increase our understanding of the neuronal deficits underlying many speech and language disorders; however, this technology is problematic when used with children who cannot sustain visual attention. The goal of this project was to link ERPs with eye-tracking technology to allow a wider range of populations to benefit from the scientific gains currently possible with visual ERP research.

Data retention is vital when using EEG. Two common problems in developmental studies are 1) lack of sustained attention in children, and 2) loss of data by relying on stimulus onset for epoching data. Traditional approaches to these problems are often subjective and can lead to poor quality and/or lost data.

The current study investigated whether using linked eye-tracking and EEG technology leads to better data retention in adults and children.

Ρ	Study De				
	Sample	Attention-getter Critical feature	Traditional method	other an	
	Adults <i>(N</i> = 23)	<i>n</i> = 13	<i>n</i> = 10	Data Col	
	Children (N = 18)	<i>n</i> = 10	n = 8	referenc	

Improving Developmental EEG with Eye-Tracking Anna E. Fitzhugh, M.A.; Grant Magnon; Alyson D. Abel, Ph.D.; Mandy J. Maguire, Ph.D.

D	ATA ANALYSIS
Epoching	Analysi
Attention-Getter method:	 Prop
* Presentation onset of the picture	afte
Critical Feature method:	• Grou
* Participants' first look to the head of the aning	nal and
Traditional method:	 Alph
* Presentation onset of the picture	

RESULTS

		Critical Feature	Attention Getter	Traditional		100 - 90 - 80 -	
ADULTS	% Retained	49.16	72.97	66.90	Epochs	70 -	
	Variance	798.24	713.76	2601.88	Usable E	60 -	
	Range	30-147	87-180	45-188	of	50 - 40 -	
ILDREN	% Retained	39.31	58.31	44.03	Proportion	30 -	
	Variance	635.11	2406.62	1040.5		20 -	
IJ	Range	19-106	17-162	41-130		0 -	

CONCLUSIONS

Research Question 1

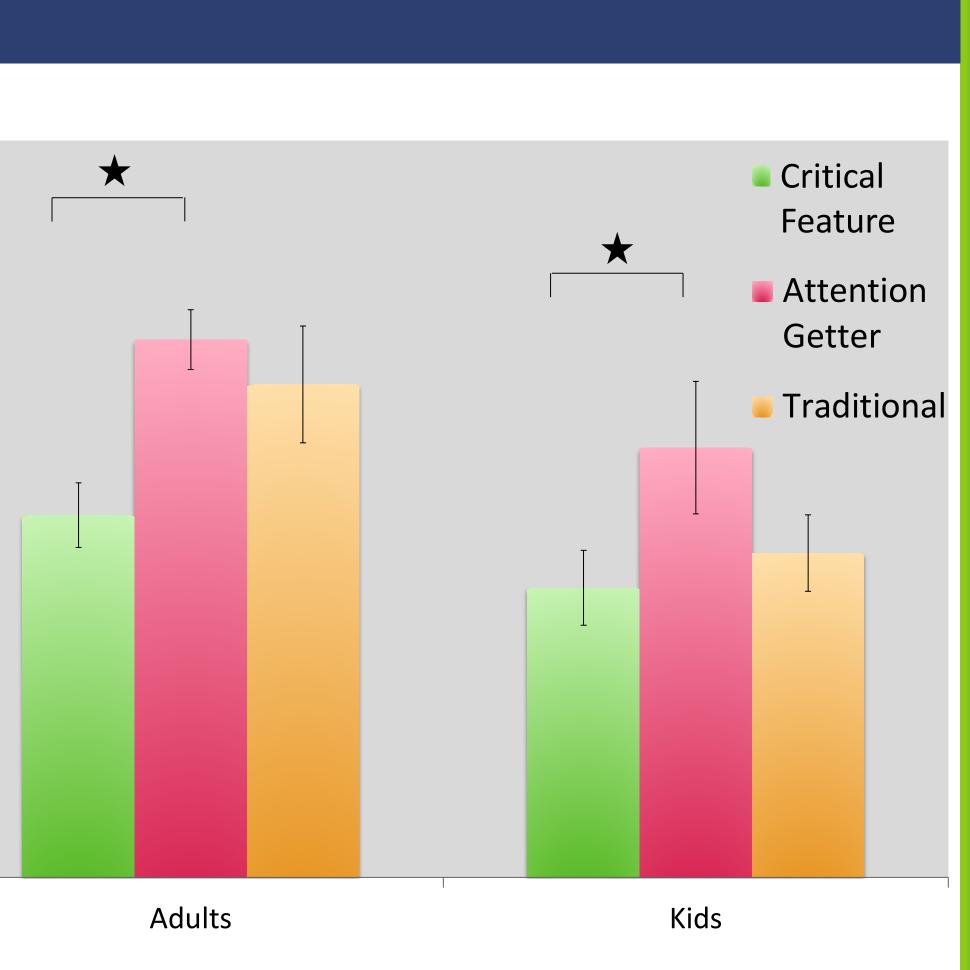
- The best data retention occurred from the Attention-Getter method. This was significantly better than critical feature (t(22) = 6.88, p < .001), but only slightly better than the traditional method. The benefit was larger for children than adults.
- Within group variance is greater for traditional methods than the attention-getter method for adults. The opposite pattern is true for children.
- Thus, using the eye-tracker as an Attention Getter method helps maintain a higher proportion of usable data for both children and adults, while also reducing variance in the adult group.

Research Question 2

Using eye-gaze data to measure critical feature analysis does not increase the proportion of usable data.

SELECTED REFERENCES

Quinn, P., Doran, M., Reiss, J., & Hoffman, J. (2009). Time course of visual attention in infant categorization of cats versus dogs: Evidence for a head bias as revealed through eye tracking. *Child Development, 80(1),* 151-161. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime Extensions for Tobii. Pittsburgh: Psychology Software Tools, Inc. Tobii Studio (2010). Tobii Studio 2.2 User's Manual. Stockholm, Sweden: Tobii Technology AB.


ACKNOWLEDGEMENTS

This poster was possible with support from NIH/NIDCD R03HD064629-01 to MM. We are grateful for the help of research assistants and the participation of families and children.

Developmental Neurolinguistics Laboratory

SIS

- portion of usable epochs per subject calculated er correcting for errors
- oup means compared using a series of pairedindependent-samples *t*-tests
- ha adjusted for familywise error, *p* < 0.017

